lamindb.Collection¶
- class lamindb.Collection(artifacts: list[Artifact], name: str, description: str | None = None, meta: Any | None = None, reference: str | None = None, reference_type: str | None = None, run: Run | None = None, revises: Collection | None = None)¶
Bases:
Record
,IsVersioned
,TracksRun
,TracksUpdates
Collections of artifacts.
Collections provide a simple way of linking & versioning collections of artifacts (Tutorial: Artifacts).
- Parameters:
artifacts –
list[Artifact]
A list of artifacts.name –
str
A name.description –
str | None = None
A description.revises –
Collection | None = None
An old version of the collection.run –
Run | None = None
The run that creates the collection.meta –
Artifact | None = None
An artifact that defines metadata for the collection.reference –
str | None = None
For instance, an external ID or a URL.reference_type –
str | None = None
For instance,"url"
.
See also
Examples
Create a collection from a list of
Artifact
objects:>>> collection = ln.Collection([artifact1, artifact2], name="My collection")
Create a collection that groups a data & a metadata artifact (e.g., here RxRx: cell imaging):
>>> collection = ln.Collection(data_artifact, name="My collection", meta=metadata_artifact)
Attributes¶
Simple fields¶
-
uid:
str
¶ Universal id, valid across DB instances.
-
name:
str
¶ Name or title of collection (required).
-
description:
str
¶ A description.
-
hash:
str
¶ Hash of collection content. 86 base64 chars allow to store 64 bytes, 512 bits.
-
reference:
str
¶ A reference like URL or external ID.
-
reference_type:
str
¶ Type of reference, e.g., cellxgene Census collection_id.
-
visibility:
int
¶ Visibility of collection record in queries & searches (1 default, 0 hidden, -1 trash).
-
version:
str
¶ Version (default
None
).Defines version of a family of records characterized by the same
stem_uid
.Consider using semantic versioning with Python versioning.
-
is_latest:
bool
¶ Boolean flag that indicates whether a record is the latest in its version family.
-
created_at:
datetime
¶ Time of creation of record.
-
updated_at:
datetime
¶ Time of last update to record.
Relational fields¶
Class methods¶
- classmethod df(include=None, join='inner', limit=100)¶
Convert to
pd.DataFrame
.By default, shows all direct fields, except
updated_at
.If you’d like to include other fields, use parameter
include
.- Parameters:
include (
str
|list
[str
] |None
, default:None
) – Related fields to include as columns. Takes strings of form"labels__name"
,"cell_types__name"
, etc. or a list of such strings.join (
str
, default:'inner'
) – Thejoin
parameter ofpandas
.
- Return type:
DataFrame
Examples
>>> labels = [ln.ULabel(name="Label {i}") for i in range(3)] >>> ln.save(labels) >>> ln.ULabel.filter().df(include=["created_by__name"])
- classmethod filter(*queries, **expressions)¶
Query records.
- Parameters:
queries – One or multiple
Q
objects.expressions – Fields and values passed as Django query expressions.
- Return type:
QuerySet
- Returns:
A
QuerySet
.
See also
Guide: Query & search registries
Django documentation: Queries
Examples
>>> ln.ULabel(name="my ulabel").save() >>> ulabel = ln.ULabel.get(name="my ulabel")
- classmethod get(idlike=None, **expressions)¶
Get a single record.
- Parameters:
idlike (
int
|str
|None
, default:None
) – Either a uid stub, uid or an integer id.expressions – Fields and values passed as Django query expressions.
- Return type:
- Returns:
A record.
- Raises:
lamindb.core.exceptions.DoesNotExist – In case no matching record is found.
See also
Guide: Query & search registries
Django documentation: Queries
Examples
>>> ulabel = ln.ULabel.get("2riu039") >>> ulabel = ln.ULabel.get(name="my-label")
- classmethod lookup(field=None, return_field=None)¶
Return an auto-complete object for a field.
- Parameters:
field (
str
|DeferredAttribute
|None
, default:None
) – The field to look up the values for. Defaults to first string field.return_field (
str
|DeferredAttribute
|None
, default:None
) – The field to return. IfNone
, returns the whole record.
- Return type:
NamedTuple
- Returns:
A
NamedTuple
of lookup information of the field values with a dictionary converter.
See also
Examples
>>> import bionty as bt >>> bt.settings.organism = "human" >>> bt.Gene.from_source(symbol="ADGB-DT").save() >>> lookup = bt.Gene.lookup() >>> lookup.adgb_dt >>> lookup_dict = lookup.dict() >>> lookup_dict['ADGB-DT'] >>> lookup_by_ensembl_id = bt.Gene.lookup(field="ensembl_gene_id") >>> genes.ensg00000002745 >>> lookup_return_symbols = bt.Gene.lookup(field="ensembl_gene_id", return_field="symbol")
- classmethod search(string, *, field=None, limit=20, case_sensitive=False)¶
Search.
- Parameters:
string (
str
) – The input string to match against the field ontology values.field (
str
|DeferredAttribute
|None
, default:None
) – The field or fields to search. Search all string fields by default.limit (
int
|None
, default:20
) – Maximum amount of top results to return.case_sensitive (
bool
, default:False
) – Whether the match is case sensitive.
- Return type:
QuerySet
- Returns:
A sorted
DataFrame
of search results with a score in columnscore
. Ifreturn_queryset
isTrue
.QuerySet
.
Examples
>>> ulabels = ln.ULabel.from_values(["ULabel1", "ULabel2", "ULabel3"], field="name") >>> ln.save(ulabels) >>> ln.ULabel.search("ULabel2")
- classmethod using(instance)¶
Use a non-default LaminDB instance.
- Parameters:
instance (
str
|None
) – An instance identifier of form “account_handle/instance_name”.- Return type:
QuerySet
Examples
>>> ln.ULabel.using("account_handle/instance_name").search("ULabel7", field="name") uid score name ULabel7 g7Hk9b2v 100.0 ULabel5 t4Jm6s0q 75.0 ULabel6 r2Xw8p1z 75.0
Methods¶
- append(artifact, run=None)¶
Add an artifact to the collection.
Creates a new version of the collection.
- Parameters:
- Return type:
Added in version 0.76.14.
- cache(is_run_input=None)¶
Download cloud artifacts in collection to local cache.
Follows synching logic: only caches outdated artifacts.
Returns paths to locally cached on-disk artifacts.
- Parameters:
is_run_input (
bool
|None
, default:None
) – Whether to track this collection as run input.- Return type:
list
[UPath
]
- delete(permanent=None)¶
Delete collection.
- Parameters:
permanent (
bool
|None
, default:None
) – Whether to permanently delete the collection record (skips trash).- Return type:
None
Examples
For any
Collection
objectcollection
, call:>>> collection.delete()
- describe(print_types=False)¶
Describe relations of record.
Examples
>>> artifact.describe()
- load(join='outer', is_run_input=None, **kwargs)¶
Stage and load to memory.
Returns in-memory representation if possible such as a concatenated
DataFrame
orAnnData
object.- Return type:
Any
- mapped(layers_keys=None, obs_keys=None, obsm_keys=None, obs_filter=None, join='inner', encode_labels=True, unknown_label=None, cache_categories=True, parallel=False, dtype=None, stream=False, is_run_input=None)¶
Return a map-style dataset.
Returns a pytorch map-style dataset by virtually concatenating
AnnData
arrays.If your
AnnData
collection is in the cloud, move them into a local cache first viacache()
.__getitem__
of theMappedCollection
object takes a single integer index and returns a dictionary with the observation data sample for this index from theAnnData
objects in the collection. The dictionary has keys forlayers_keys
(.X
is in"X"
),obs_keys
,obsm_keys
(underf"obsm_{key}"
) and also"_store_idx"
for the index of theAnnData
object containing this observation sample.Note
For a guide, see Train a machine learning model on a collection.
This method currently only works for collections of
AnnData
artifacts.- Parameters:
layers_keys (
str
|list
[str
] |None
, default:None
) – Keys from the.layers
slot.layers_keys=None
or"X"
in the list retrieves.X
.obs_keys (
str
|list
[str
] |None
, default:None
) – Keys from the.obs
slots.obsm_keys (
str
|list
[str
] |None
, default:None
) – Keys from the.obsm
slots.obs_filter (
tuple
[str
,str
|tuple
[str
,...
]] |None
, default:None
) – Select only observations with these values for the given obs column. Should be a tuple with an obs column name as the first element and filtering values (a string or a tuple of strings) as the second element.join (
Literal
['inner'
,'outer'
] |None
, default:'inner'
) –"inner"
or"outer"
virtual joins. IfNone
is passed, does not join.encode_labels (
bool
|list
[str
], default:True
) – Encode labels into integers. Can be a list with elements fromobs_keys
.unknown_label (
str
|dict
[str
,str
] |None
, default:None
) – Encode this label to -1. Can be a dictionary with keys fromobs_keys
ifencode_labels=True
or fromencode_labels
if it is a list.cache_categories (
bool
, default:True
) – Enable caching categories ofobs_keys
for faster access.parallel (
bool
, default:False
) – Enable sampling with multiple processes.dtype (
str
|None
, default:None
) – Convert numpy arrays from.X
,.layers
and.obsm
stream (
bool
, default:False
) – Whether to stream data from the array backend.is_run_input (
bool
|None
, default:None
) – Whether to track this collection as run input.
- Return type:
Examples
>>> import lamindb as ln >>> from torch.utils.data import DataLoader >>> ds = ln.Collection.get(description="my collection") >>> mapped = collection.mapped(label_keys=["cell_type", "batch"]) >>> dl = DataLoader(mapped, batch_size=128, shuffle=True)
- restore()¶
Restore collection record from trash.
- Return type:
None
Examples
For any
Collection
objectcollection
, call:>>> collection.restore()
- save(using=None)¶
Save the collection and underlying artifacts to database & storage.
- Parameters:
using (
str
|None
, default:None
) – The database to which you want to save.- Return type:
Examples
>>> collection = ln.Collection("./myfile.csv", name="myfile") >>> collection.save()
- view_lineage(with_children=True)¶
Graph of data flow.
- Return type:
None
Notes
For more info, see use cases: Data lineage.
Examples
>>> collection.view_lineage() >>> artifact.view_lineage()
- async adelete(using=None, keep_parents=False)¶
- async arefresh_from_db(using=None, fields=None, from_queryset=None)¶
- async asave(*args, force_insert=False, force_update=False, using=None, update_fields=None)¶
- clean()¶
Hook for doing any extra model-wide validation after clean() has been called on every field by self.clean_fields. Any ValidationError raised by this method will not be associated with a particular field; it will have a special-case association with the field defined by NON_FIELD_ERRORS.
- clean_fields(exclude=None)¶
Clean all fields and raise a ValidationError containing a dict of all validation errors if any occur.
- date_error_message(lookup_type, field_name, unique_for)¶
- get_constraints()¶
- get_deferred_fields()¶
Return a set containing names of deferred fields for this instance.
- prepare_database_save(field)¶
- refresh_from_db(using=None, fields=None, from_queryset=None)¶
Reload field values from the database.
By default, the reloading happens from the database this instance was loaded from, or by the read router if this instance wasn’t loaded from any database. The using parameter will override the default.
Fields can be used to specify which fields to reload. The fields should be an iterable of field attnames. If fields is None, then all non-deferred fields are reloaded.
When accessing deferred fields of an instance, the deferred loading of the field will call this method.
- save_base(raw=False, force_insert=False, force_update=False, using=None, update_fields=None)¶
Handle the parts of saving which should be done only once per save, yet need to be done in raw saves, too. This includes some sanity checks and signal sending.
The ‘raw’ argument is telling save_base not to save any parent models and not to do any changes to the values before save. This is used by fixture loading.
- serializable_value(field_name)¶
Return the value of the field name for this instance. If the field is a foreign key, return the id value instead of the object. If there’s no Field object with this name on the model, return the model attribute’s value.
Used to serialize a field’s value (in the serializer, or form output, for example). Normally, you would just access the attribute directly and not use this method.
- unique_error_message(model_class, unique_check)¶
- validate_constraints(exclude=None)¶
- validate_unique(exclude=None)¶
Check unique constraints on the model and raise ValidationError if any failed.